
Statistical Analysis of the Chikungunya
Fever

Purvasha Chakravarti

Carnegie Mellon University

Department of Statistics

Pittsburgh, PA 15213

ABSTRACT

The first locally-acquired Chikungunya virus (CHIKV) infections in the Americas

were reported in the Caribbean in December, 2013. Due to the recent emergence

of the disease in the Americas, the current extent of spread and risk is uncertain.

Understanding the spread of the disease is paramount for taking preventive measures,

but challenging due to limitations of current data on the outbreak and on CHIKV

transmission. We propose two models for modeling the number of infected cases of

Chikungunya: a multi-country SIR model and a multi-country ARIMA model. The

different models explain different aspects of the disease spread. While the former

explains the rate of spread of the disease, the latter forecasts the number of new

infected cases of Chikungunya.
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1 Introduction

Chikungunya Fever is an emerging viral disease in the Americas, caused by the al-

phavirus, Chikungunya virus (CHIKV) and transmitted by mosquitos. The most

common symptoms of Chikungunya are fever and joint pain; the joint pains are

sometimes known to last for years. The fever may be accompanied with headache,

muscle pain, joint swelling, or rash. Chikungunya has occurred in outbreaks of un-

precedented magnitude in Asia, Africa, Europe and the Americas since 2004. The

disease has affected approximately two million people, with some areas having attack

rates as high as 68% [Roth et al., 2014].

The Chikungunya virus is transmitted to humans by the bite of infectious mosquitos,

predominantly mosquitos of the Aedes genus; Aedes aegypti and Aedes albopictus [La-

hariya and Pradhan, 2006]. The first indication of Chikungunya can be identified by

the sudden onset of fever two to four days after exposure. The fever typically lasts for

two to seven days and is usually accompanied by joint pains which typically last for

weeks or months and sometimes for years. Sometimes there are other symptoms like

muscle pain, head ache, nausea, fatigue and rash [Sourisseau et al., 2007]. Chikun-

gunya has a mortality rate of little less than 1 in 1000. Usually the elderly, infants or

those having underlying chronic medical problems having higher risk of complications

[Mavalankar et al., 2008].

Chikungunya virus has an incubation period ranging from one to twelve days,

and is most typically three to seven days [Thiberville et al., 2013]. That is, it takes

typically three to seven days after the exposure of the disease, for an individual to

show symptoms. The disease occurs in two stages. The first stage usually begins with

a very high fever, usually above 102oC and sometimes reaching 104oC. The fever lasts
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from a week to ten days, during which viremia occurs. However, other symptoms like

headache and extreme exhaustion last for another five to seven days [Chhabra et al.,

2008].

The second stage of the disease lasts for approximately ten days during which

symptoms improve and the virus disappears from the blood. This is followed by

strong joint pains and stiffness in muscles, which last for weeks but may last for

years. Joint pain is reported by 87% to 98% of the patients and often results in near

immobility of the affected joints. During the La Reunion outbreak (in Reunion Island

in the Indian Ocean) in 2006, more than 60% of the people reported painful joints

three years after the original Chikungunya infection [Schilte et al., 2013]. Similarly

after a local epidemic of chikungunya in Italy, 66% of the people reported muscle

pains or joint pains one year after acute infection [Moro et al., 2012].

The word ‘Chikungunya’ is believed to have been derived from ‘Kungunyala’,

meaning “that which bends up” in Makonde language, which refers to the contorted

posture of people affected with the severe joint pain associated with this disease

[CDC, 2006]. Chikungunya was discovered by Marion Robinson and W.H.R. Lumsden

in 1955 after an outbreak in 1952 on the Makonde Plateau, the mainland part of

modern-day Tanzania. They found that in Africa, the virus largely cycles between

other non-human primates, like monkeys, birds, cattle, and rodents, and mosquitos

between human outbreaks [Powers and Logue, 2007]. Due to the high concentration

of virus in the blood of those infected (or in the acute stage of infecton), the virus

can circulate to and fro between humans and mosquitos very easily. Hence outbreaks

are usually related to heavy rainfall which implies increase in mosquito population

[Burt et al., 2012].
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Since its discovery, periodic outbreaks have been documented in Africa, South

Asia, and Southeast Asia. After some years of inactivity, in 2005 Chikungunya caused

large outbreaks in Africa and Asia. For example in 2006, in India it re-appeared

after 32 years of absence in an outbreak that reported 1.25 million suspected cases

[Lahariya and Pradhan, 2006]. Before that, the largest Chikungunya epidemic that

had been documented was in 2005 in an outbreak on the Runion Island in the Indian

Ocean. It was estimated that 266, 000 people were affected on the island which had

a population of approximately 770, 000 people [Roth et al., 2014].

The outbreak which started in 2005 was very severe and its severity is attributed

to a change in the genetic sequence of the virus which allows it to multiply more

easily in mosquito cells. The mutation also allows the virus to be carried by the

Asian tiger mosquito, Aedes albopictus, in addition to its main vector or carrier Aedes

aegypti. This could increase the risk of outbreaks since Aedes aegypti grows strictly

in tropical climate whereas Aedes albopictus is a more invasive species which has

spread through Europe, the Americas, the Carribean, Africa and the Middle East

[Schuffenecker et al., 2006] [Tsetsarkin et al., 2007].

While Chikungunya transmission had never been documented in the Americas

before 2013, the potential for outbreaks had long been recognized because of the

prevalence of the vectors (carriers) and their efficiency at transmitting dengue viruses

[CDC, 2014]. In December 2013, Pan American Health Organization (PAHO) and

World Health Organization (WHO) reported the first cases of locally acquired Chikun-

gunya infections in Americas, reported from St. Martin [Leparc-Goffart et al., 2015].

As of November 2015, 1.5 million cases have been reported in Americas since its start

in December 2013, which has amplified the concern and awareness about this disease.
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Due to the recent emergence of the disease in the Americas, the current extent

of spread and risk is uncertain. It is important for us to understand the spread of

Chikungunya for effective intervention, but it is a difficult task as cases might be

unrecognized or confused with other diseases such as dengue. Some cases might not

even get reported. Analyzing travel patterns is also important to understand the

spread of transmissions. But it is very difficult to capture travel patterns in real-time

and sometimes the patterns change due to the outbreak itself. Further, epidemics are

themselves stochastic in nature [Johansson et al., 2014].

In 2013, Pan American Health Organisation (hereby called PAHO) in collabo-

ration with the U.S. Center for Disease Control and Prevention (CDC) published

new guidelines on Chikungunya. PAHO recommends that countries must maintain

the capacity to detect and confirm Chikungunya cases, manage patients and imple-

ment social communication strategies to reduce the presence of mosquitos [PAHO,

2013]. PAHO then published the cumulative number of Chikungunya cases for all the

countries in the Americas.

In this paper we try to understand and predict the spread of the Chikungunya

disease in the Americas. We propose two different models to predict the infected

case counts. The first model, named multi-country SIR compartment model, uses a

SIR compartment model for every country and incorporates information about travel

between the countries. The second model, named multi-country ARIMA model uses a

multi-variate ARIMA model to forecast the number of infected cases of Chikunguya.

The models have been explained in detail in Section 3. One of the major porblems

encountered in modeling the spread of the disease is the scarcity of data. This has

been discussed in Section 2 in more detail.
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2 Data on Chikungunya Transmission in the Amer-

icas

Countries affected by Chikungunya in the Americas are required by PAHO to main-

tain a record of the progress of the disease since December 2013. The countries

maintain a record of the number of suspected, confirmed and imported cases of

Chikungunya in their country. The suspected and confirmed cases are counts for

autochthonous (locally acquired) transmissions of the disease. Autochthounus cases

are those cases which are native rather than descended from migrants or colonists and

hence their presence in a country signifies the presence of the virus in the mosquito

population of the country. In addition to collecting the raw counts of the people cur-

rently infected, PAHO computes the incidence rate of the disease in every country,

that is, it reports the number of confirmed autochthonous transmissions per hundred

thousand population.

PAHO maintains the weekly record of the cumulative counts for all the countries in

Americas on their website (www.paho.com). As of November 2015, fifty-one countries

in the Americas have been affected by Chikungunya and so the data consists of the

cases reported weekly in each of these countries since December, 2013. There have

been a total of 61, 282 confirmed autochthonus cases in the Americas in a total of 97

epidemic weeks counting until November 6th, 2015.

One of the main challenges in extracting the data is that the weekly record of

the cumulative counts published by PAHO, is in the pdf format and most automated

text scraping tools do not suffice to extract the data. Some of the entries are also in

Spanish instead of English which makes it really difficult to regularize the data for

modeling purposes. We used different individualized scripts for every week to extract

www.paho.com
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Figure 2.1: Confirmed new cases per epidemic week in Colombia and French Guiana. The
count at epidemic week 45 for Colombia and at epidemic week 30 for French Guiana are
negative due to error.

the data for that week.

Another major challenge is that data is not available for every week. There are

29 countries with more than 10 weeks worth of data and just 6 countries with more

than 30 weeks worth of data. So we don’t have sufficient data to model the spread

of the disease for every country. The countries that have more than 30 weeks of data

are Mexico, El Salvador, French Guiana, Puerto Rico, Colombia and Paraguay.

As mentioned earlier, the case counts are updated cumulatively, that is, every

week, the number of new cases for that week are added to the previous week’s case

counts. Sometimes the new cases in a week are miscounted either due to a wrong

diagnosis or due to manual error in entering the counts. These errors are usually

corrected in subsequent weeks. As a result of the updates, sometimes the cumulative

counts decrease in consecutive weeks instead of being non-decreasing. For example,

plotting the difference in the cumulative counts of consecutive weeks for Colombia and

French Guiana, we notice that the number of infected cases is negative at epidemic

week 45 and epidemic week 30 for Colombia and French Guiana respectively, see
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Figure 2.1. Since we do not know when the error was made, we just assume zero new

cases in the weeks with negative count.
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Figure 2.2: Total infectious subjects per week in Americas. We observe an anamoly at
epidemic week 72 in the plot of Confirmed cases in Americas due to an adjustment in the
process of updating the cumulative number of confirmed autochthonus cases. The corrected
confirmed cases in Americas is corrected by just assuming that there were no new confirmed
cases in epidemic week 72.

We also noticed a sudden drop in the total cumulative confirmed cases in the

Americas from epidemic week 71 to 72, that is from May 8th to 15th, 2015. The

counts dropped from 31, 223 to 8, 790 in a week. The most likely reason for such an

abrupt change is a change in the process of updating the cumulative counts. But as

the reason of the abrupt change is unknown, we try to explore the different reasons

that could have caused this change.

First, we take a difference of the cumulative counts to get the new confirmed

autochthonus cases per week. This would result in a huge negative count at epidemic

week 72. So instead, we decide to treat the cumulative count at epidemic week 72 as

the number of new cases that week, see Figure 2.2. We notice that the new count of

8, 790 at epidemic week 72 is much higher than in any other week. Therefore it is not
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likely to be the number of new autochthonus cases in epidemic week 72.

To avoid further complications and not lose too much information, we just assume

that there were no new confirmed cases between epidemic weeks 71 and 72. The

number of new confirmed cases from epidemic week 73 onwards are assumed to be

correct and then the new cumulative counts are taken into consideration. From the

corrected new confirmed cases per week in Figure 2.2, we see that assuming no new

confirmed cases in epidemic week 72 does not really change the local distribution.

We use the thus corrected new confirmed cases per week to model the spread

of the disease in the Americas. Due to lack of data, we don’t model the spread of

the disease for every country. Instead, we model the spread of the disease for the

Americas on the whole and for a few specific countries in the results section.

3 Methods

We have used two models for modeling the number of infected cases of Chikun-

gunya: a multi-country SIR model and a multi-country ARIMA model. We used the

multi-country SIR compartment model to understand the spread of the disease, see

subsection 3.1. In fact the model helps us to understand whether Chikungunya will

cause an epidemic. On the other hand, the multi-country ARIMA model was consid-

ered in order to predict the future number of infected cases, see subsection 3.3. In

this section, we also consider a theoretical extension of the simple SIR compartment

model that includes the mosquito population, in subsection subsection 3.2. As we

do not have necessary data on the mosquito population, we investigate the theory

behind the model but do not use this model in the Results section. Despite this, it is
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discussed in this section to explain how multi-country SIR models can be extended

to incorporate mosquito population.

The dynamics of the disease in the multi-country models, are modeled by account-

ing for infected people travelling from one country to another. For multi-country SIR

modeling, we use a different SIR compartment model for each country and include

a variable for people travelling between the infected compartments of the different

countries. The data for the movement of people between the different countries could

be taken from flight itineraries but as not all the countries have the data readily avail-

able, we assumed constant number of people traveling between the different countries,

every week.

In the multi-country ARIMA model we include a variable for counting the number

of infected cases of Chikungunya in each country and we incorporate the information

regarding travel between the countries using a multi-variate ARIMA model. Hence,

the multi-variate model explains the influence of a country in spreading the disease

in another country.

3.1 Multi-country SIR Compartment Model

Compartment models are one of the most commonly used methods for modeling epi-

demics. The method is founded upon differential equations and was introduced by

Kermack and McKendrick in the early 1900s [Kermack and McKendrick, 1927]. These

models serve as a base mathematical framework for understanding the complex dy-

namics of diseases. The model assumes the population to be a homogeneous mixture

of people who are divided between compartments. The compartments in the model

represent their health status with respect to the pathogen in the system. They also
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assume perfect mixing within the population which implies that people make contact

at random and do not usually mix in a smaller subgroup.

The SIR model is a compartment model that considers three compartments called

Susceptible (S), Infected (I) and Removed (R). Individuals belong to the susceptible

compartment if they are susceptible to the infection. They belong to the infected

compartment if they are already infected and to the removed compartment if they

are neither infected nor susceptible to the infection. The italic letters, S, I and R are

used to denote the populations in S, I and R compartments respectively. The italic

letter N is used to denote the total population, that is, S+ I+ R = N.

Since individuals in the R compartemnt are not susceptible to infection, only

people in the susceptible (S) compartment can get infected in the population. Also

they get infected only when they come in contact with an infected person (with some

probability). Hence the rate at which people get infected is proportional to the rate

of contacts between susceptible and infected people, that is, it is proportioanl to

SI/N. Once the suspectible people are infected they leave S compartment. Hence the

rate at which susceptible people get infected is also equal to the rate at which the S

compartment’s population decreases. Therefore,

dS

dt
∝ −

SI

N
. (3.1)

Let β be the contact rate, which takes into account the probability of getting the

disease in a contact between a susceptible and an infectious subject. Then β becomes

the proportionality constant in equation 3.1.

Considering the infected (I) compartment, we notice that the population increases

as the infected people from S compartment move to the I compartment. But some
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of the infected people also recover from the disease and hence are removed to the

R compartment. Let γ be the recovery rate, indicating the average proportion of

infected people who recover every instant. Hence γ can also be seen as the inverse of

the average recovery time. Then the change in the population of I compartment can

be given by,

dI

dt
=
β

N
SI− γI. (3.2)

As the number of people in the removed (R) compartment can be found by R =

N− S− I, the change in population of R compartment can be given by,

dR

dt
= −

dS

dt
−
dI

dt
= γI. (3.3)

Combining the equations above (3.1, 3.2, 3.3), SIR models can be defined by the

following set of differential equations. [Kermack and McKendrick, 1927]

dS

dt
= −

β

N
SI

dI

dt
=
β

N
SI− γI (3.4)

dR

dt
= γI

where,

β is the contact rate,

γ is the recovery rate,

S is the number of susceptible people,

I is the number of infected people,

R is the number of removed people,
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Figure 3.1: Two-country SIR compartment model

N is the total population.

For a fixed SIR compartment model, the basic reproduction number, R0 = β
γ

can be defined as the expected number of new infections from a single infection in

a population where all people are susceptible. Therefore, having a value of R0 > 1

indicates an epidemic where the infection peaks and eventually dies down and a value

of R0 < 1 indicates that the infection will die out without an epidemic.

To propose a multi-country SIR compartment model, we model every country with

a different compartment model and include travel between the infected compartments

of the different countries. Let us consider m countries with variables βi, γi, Si, Ii, Ri

and Ni as defined before, for every country i = 1, 2, . . . ,m and let rij denote the

number of people traveling between any two countries i and j.

We assume that the population of the countries (Ni) remains constant over time.

Hence movement between the susceptible and removed compartments of different

countries is inconsequential to the dynamics of the disease. We also assume that the

movement is homogeneous, that is, the number of people belonging to a particular

compartment among the people who cross borders, is proportional to the number of
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people belonging to the compartment in the country. Lastly, we assume that there is

no migration between countries and so the number of people traveling from country i

to j is the same as the number of people moving from j to i, that is, rij = rji. Figure

3.1 gives a pictographic representation of a two-country SIR compartment model.

Therefore the multi-country SIR compartment model for countries i = 1, 2, . . . ,m

is characterized by the following differential equations:

dSi

dt
= −

βi

Ni

SiIi

dIi

dt
=
βi

Ni

SiIi − γiIi −

m∑
j=1,j 6=i

rij
Ii

Ni

+

m∑
j=1,j 6=i

rji
Ij

Nj

(3.5)

dRi

dt
= γiIi

where βi, γi, Si, Ii, Ri and Ni are defined as before for country i = 1, 2, . . . ,m and

rij = rji denotes the number of people traveling between any two countries i and j.

While the multi-country model considers the change in the dynamics of the disease

as infected people travel from one country to another, they don’t really consider the

prevalence of the disease carrying vector, the mosquitos in the case of Chikungunya.

Ideally, to understand the dynamics of the spread of any mosquito-borne infectious

disease, for example Chikungunya, we should consider a compartment model that in-

cludes the mosquito population. Therefore, we propose a multi-country compartment

model that includes the mosquito population in the next subsection.
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3.2 Multi-country Ross-Macdonald Model for Mosquito-borne
Infectious Diseases

Ronald Ross and George Macdonald developed a mathematical model of mosquito-

borne transmissions commonly known as Ross-Macdonald Model [Smith et al., 2012].

The model considers homogeneous human and mosquito population and perfect mix-

ing within the two populations and between the mosquito and human population. It

also assumes constant population of the humans and mosquitos. The model is given

by:

dIH

dt
= abIM

NH − IH
NH

− γIH

dIM

dt
= ac(NM − IM)

IH

NH

− δIM (3.6)

where,

a is the mosquito biting rate,

b is the mosquito to human transmission probability, per bite

c is the human to mosquito transmission probability, per bite

γ human recovery rate: inverse of average duration of infection in humans,

δ mosquito death rate: inverse of average duration of mosquito infection.

IH number of infected humans,

NH total number of humans in population,

IM number of infected mosquitos,

NM total number of mosquitos in population.

We propose a multi-country model, similar to the multi-country SIR compartment
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model, that considers a Ross-Macdonald model for each country and then incorporates

the travel between the infected compartments of the countries. Then the set of

differential equations for the system is given by,

dIHi

dt
= abiIMi

NHi − IHi
NHi

− γiIHi −

m∑
j=1,j 6=i

rij
IHi

NHi

+

m∑
j=1,j 6=i

rji
IHj

NHj

dIMi

dt
= aci(NMi − IMi)

IHi

NHi

− δiIMi (3.7)

where the variables a, bi, ci, γi, δi, NHi, IHi, NMi, IMi are as defined in equation (3.6)

for every country i = 1, 2, . . . ,m. Similar to the multi-country SIR compartment

model in equation (3.5), we define rij as the number of people traveling between any

two countries i and j. Notice that, the mosquito biting rate a is kept a constant and

is assumed to not depend on which country the mosquito is from. Therefore, it need

not be indexed by the country.

Due to the lack of data on mosquito population, we do not apply this approach in

this paper. Vector Map provides data on number of mosquitos caught in particular

areas, which in the future, can be used to get the mosquito population in a particular

area. The backdraw of compartment models is that the assumptions made might not

be accurate and hence might affect the accuracy of the predictions. In the Results

section, we see that the SIR compartment models are not very accurate and hence

we need a better model to forecast the spread of the disease. We therefore propose

a multi-variate time series model, the proposed multi-country ARIMA model, to

forecast the spread of Chikungunya in the Americas.

http://vectormap.si.edu/
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3.3 Multi-country Autoregressive Integrated Moving Aver-
age (ARIMA) Model

While the previously discussed compartment models use a set of differential equations,

a different approach for modeling disease counts, is an ARIMA model which uses data

at previous time points to estimate the present. The advantage of ARIMA models

over compartment models is that, ARIMA models can be used to fit time series

data both to better understand the data and to predict future points in the series

(forecast). Compared to other time series models, ARIMA models are generally used

in cases where there is evidence of non-stationarity in the data but where an initial

differencing step can be applied to reduce the non-stationarity [Box and Jenkins,

1990].

ARIMA models are generally denoted by ARIMA(p, d, q) where parameters p, d,

and q are non-negative integers, p is the order of the Autoregressive model, d is the

degree of differencing, and q is the order of the Moving-Average model. Then given

time series data Xt ∈ R, where t is an integer, an ARIMA(p, d, q) model is given by

the following equation:

(
1−

p∑
i=1

αiB
i

)
(1− B)d Xt = δ+

(
1+

q∑
i=1

θiB
i

)
εt, (3.8)

where, B is backward shift operator, i.e., (1 − B) is the difference operator. Hence,

BXt = Xt−1 and BkXt = Xt−k for any k and t. αi’s are the parameters of the autore-

gressive part of the model, θi’s are the parameters of the moving average part and the

εt’s are error terms that are assumed to be independent and identically distributed

variables sampled from N(0, σ2t). δ/(1 −
∑p

i=1 αi) is the drift of the ARIMA(p, d, q)

process.
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While the ARIMA model can be used to model the number of infections in one

area, we would like to incorporate the effect of a country in the spread of the disease

in another country. So similar to the multi-country SIR compartment model, we

propose an ARIMA model that could also explore the relationship of the infections

between the different countries. We propose using a multivariate ARIMA model to

explain the spread of the disease across the countries where each variate is the number

of infections in a different country. Then given time series data Xt ∈ Rm, where Xit

is the infections count in country i, a multi-country ARIMA(p, d, q) model is given

by the following equation:

(
I−

p∑
i=1

αiB
i

)
(1− B)dXt =

(
I+

q∑
i=1

ΘiB
i

)
εt, (3.9)

where, B is backward shift operator as before, such that, BXt = Xt−1 and BkXt =

Xt−k for any k and t. αi’s are matrices which give the parameters of the autoregressive

part of the model, θi’s are also matrices that give the parameters of the moving average

part and the εt’s are error vectors that are assumed to be independent and identically

distributed variables sampled from multivariate normal distribution, Nm(0, σ
2I).

4 Results

In this section, we model the spread of Chikungunya using the multi-country SIR

compartment model and the multi-country ARIMA model. Section 4.1 models the

spread of Chikungunya in the Americas using a single SIR compartment model. Travel

is incorporated into the model in Section 4.2 where we fit a multi-country model to the

number of autochthonus cases in St. Martin and St. Barthelemy, which were the first
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two islands affected by Chikungunya in the Americas. We consider only two countries

St. Martin and St. Barthelemy, due to the lack of data to create more complicated

models that consider more countries.

Due to the failure of the compartment models in forecasting the spread of the

disease we use ARIMA model to forecast the total number of confirmed autochthonus

cases in the Americas in Section 4.3. We then use the multi-country ARIMA model

to incorporate travel into the ARIMA model and use it to model the spread of the

disease for French Guiana, Puerto Rico and Colombia. Once again, we only model

for these three countries as we have insufficient data to include other countries in the

model.

4.1 SIR Compartment Model for the Total Counts in the
Americas

We first model the spread of chikungunya in the Americas using an SIR compartment

model. That is, we estimate β and γ for the Americas in the set of differential

equations 3.4 given in Section 3.1. The set of differential equations were as follows:

dS

dt
= −

β

N
SI

dI

dt
=
β

N
SI− γI (4.1)

dR

dt
= γI

The advantage of using an SIR model is that it gives an estimate for the basic repro-

duction number, R0. As any disease having an R0 of value greater than one is expected

to become an epidemic, this is a number epidemiologists are generally interested in.
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The set of differential equations 4.1, do not have any closed form solution as dis-

cussed in Section 3.1. Therefore to model the data using SIR compartment model,

we need a non-linear optimization technique. We use Nelder-Mead optimization al-

gorithm to select the optimal values of β and γ for the Americas. We consider the

log-sum of error squares as our objective function in order to minimize the prediction

errors.

As there were 111 total number of autochthonus cases in the Americas initially,

we start the algorithm at I0 = 111, R0 = 0 and S0 = N− I, where N is the population

of Americas. The population of Americas is currently around 991.1 million. Then for

each value of the parameters β and γ, we can get estimates of St, It and Rt at every

week t.

Since the cumulative counts of the confirmed cases give the sum of the I and R

compartments for the given week, the error is computed as the difference between the

observed cumulative counts and the sum of estimated I and R from the model. That

is, if Yt,β,γ is the total number of cumulative autochthonus cases in the Americas in

week t and Ît,β,γ and R̂t,β,γ are the predicted number of infected and removed cases

as predicted by the differential equations, then the error at week t is given by,

et,β,γ = Yt,β,γ − Ît,β,γ − R̂t,β,γ. (4.2)

Therefore for any value of β and γ, we can find the corresponding objective function,

that is the log-sum of error squares as

l(β, γ) = log
∑
t

(
Yt,β,γ − Ît,β,γ − R̂t,β,γ

)2
. (4.3)
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We run the Nelder-Mead optimization algorithm to find the β and γ that mini-

mizes the objective function given above. As the optimization problem is not convex,

the algorithm usually gives a local optima. Hence we try different starting values for

the parameters β and γ and run the Nelder-Mead optimization algorithm for each of

them. We then select the optimum parameters with the minimum objective function.

The optimum β and γ for the Americas can be seen in Table 4.1. The basic repro-

duction number, R0, that is computed as a ratio of β over γ is 1.0314 for the Americas.

Though the value is greater than one, it is not that far from one. We compare the

value with the basic reproduction number of Ebola. Ebola’s basic reproduction num-

ber was found to be 1.51 for Guinea, 2.53 for Sierra Leone and 1.59 for Liberia by

Christian L. Althaus [Althaus, 2014]. We see that the R0 for Ebola is higher than

that of Chikungunya’s. Hence it does not clearly answer whether Chikungunya will

become and epidemic or not.

Parameters β γ R0

Americas 1 0.9695 1.0314

Table 4.1: The estimates of parameters β, the contact rate, γ, the recovery rate and Basic
Reproduction Number R0 =

β
γ for the Americas.

The major drawback of a compartment model is that it makes very rigorous

assumptions about the homogenity of the compartments and perfect-mixing between

compartments as mentioned in Section 3.1. Therefore the prediction of the number of

new cases is usually not very accurate. The predicted number of total autochthonus

cases in the Americas can be seen in Figure 4.1. We notice that the SIR compartment

model does not predict the number of new cases of Chikungunya very well but it can
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be used to understand if Chikungunya will cause an epidemic or not.
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Figure 4.1: Predicted number of confirmed cases per week in Americas.

4.2 Multi-country SIRModel for St. Martin and St. Barthelemy

The Chikungunya transmission first started in St. Martin in the Caribbean islands

and spread to St. Barthelemy, also known as St. Barts. We modeled the transmission

between them using a multi-country SIR compartment model given by the differen-

tial equations in the set of differential equations 3.5 mentioned in Section 3.1. The

differential equations were

dSi

dt
= −

βi

Ni

SiIi

dIi

dt
=
βi

Ni

SiIi − γiIi −

m∑
j=1,j 6=i

rij
Ii

Ni

+

m∑
j=1,j 6=i

rji
Ij

Nj

(4.4)

dRi

dt
= γiIi
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Here the number of countries, m = 2 and hence i, j = 1, 2. The number of people

traveling from St. Martin to St. Baths and vice-versa is assumed to be, r12 = r21 = 210,

that is, we assume approximately 30 people travel from one to the other per day. This

number was obtained by looking at flight itineraries for flights between the two islands

and capacity of each flight.

Due to the availability of only the cumulative number of confirmed cases, we have

the sum of the number of people in infected and removed compartments. So the

optimum parameters of the model can be found by using Nelder-Mead optimization

algorithm, similar to what we did in the previous section. We minimize the log-sum

of squared errors where the errors are computed by taking the difference between

cumulative confirmed cases and sum of estimated I and R for the two countries seper-

ately.

Compartment model St. Martin St. Barthelemy

Parameters β γ R0 β γ R0

SIR 0.7979 0.9669 0.8252 0.7456 0.8706 0.8564
Multi-Country SIR 0.8046 0.9738 0.8262 0.7029 0.8261 0.8509

Table 4.2: The estimates of parameters β, the contact rate, γ, the recovery rate and Basic
Reproduction Number R0 =

β
γ for St. Martin and St. Barthelemy.

Modeling the Chikungunya transmissions in St. Martin and St. Barts using both

the SIR model and the multi-country SIR model, we get the values of β and γ for the

two countries as given in Table 4.2. The estimates of the parameters do not vary too

much between the SIR compartment model and the multi-country SIR compartment

model. Interestingly, even though the R0 value for whole of Americas was seen to

be greater than 1, in this case for both countries it is less than 1. A reason for

this could be that the disease died down pretty quickly in St. Martin and St. Barts
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due to their small populations. The data confirms this as we see that the infection

indeed dies down in ten weeks in both countries. The number of infections peak in

the sixth epidemic week but we can see that the Chikungunya infection did not cause

an epidemic in these two countries, see Figure 4.2.
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Figure 4.2: Infectious subjects per week in St. Martin and St. Barthelemy. The peak of
the infectious period occurs at sixth epidemic week. In case of St. Barthelemy the peak
does not seem to have been captured.

We notice that even in this model there is a similar backdraw like the previous

model in Section 4.1. Due to the assumption of homogenity within the compartments

and perfect mixing between the compartments, the compartment model tends to

provide smoother estimates of the number of new confirmed cases every week. Hence,

as we can notice in Figure 4.2, the peak at epidemic week 6 is not really captured

well. Hence it does not really capture the full effect of the spread of Chikungunya

and would not serve as a very good forecasting model.
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4.3 Multi-country ARIMA Model

In order to create a good forecasting model, we consider ARIMA models. For fore-

casting the total cumulative number of confirmed cases in whole of the Americas

using an ARIMA(p, d, q) model as given in Equation 3.8 (Section 3.3), we choose

the ideal parameters p, d and q by minimizing the Akaike Information Criterion

(AIC). The model thus chosen is ARIMA(4, 3, 8) with an AIC value of 1477.632. But

this model fits a total of 13 parameters and seems to be overfitting the data and

so we pick ARIMA(0, 3, 2) whose AIC is 1480.766 which is pretty close to the AIC

value of the previous model. Comparing this prediction to the predicted values of the

compartment model, we notice a huge improvement in the prediction (see in Figure

4.3).
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Figure 4.3: Predicted number of total cumulative confirmed cases and the total confirmed
cases per week in Americas. The black dotted line with the predicted value. We notice that
it is much better than the fit of the SIR compartment model.

To forecast the cumulative counts in the different countries, we could either fit an

ARIMA(0, 3, 2) to them (the model used for the total counts in Americas), or find the

best ARIMA(p, d, q) model for the country using minimum AIC, or fit a multivariate
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ARIMA(p, d, q) model, given in Equation 3.9 (Section 3.3) to all the countries and

use that to forecast in the given country.

The multivariate ARIMA model fits a lot of parameters and so we need suffiecient

data to predict them. Unfortunately, as discussed in Section 2, we just have 6 coun-

tries which have more than 30 weeks worth of data but even that does not suffice.

Therefore we fit the multivariate ARIMA model for just the three countries with the

maximum data, namely French Guiana with data for 45 weeks, Puerto Rico with data

for 60 weeks and Colombia with data for 54 weeks. Figure 4.4 compares the three

different models for Puerto Rico.

We fit the multivariate ARIMA model with the minimum AIC to French Guiana,

Puerto Rico and Colombia. As a result we choose a multi-variate ARIMA(0, 1, 1)

to model the spread of Chikungunya in these three countries. Similarly, we choose

ARIMA(2, 3, 1) as the best univariate ARIMA model for just Purto Rico. We fit

the models on the data before epidemic week 90 and use it to forecast the number

of cumulative cases for the next 8 weeks. The number of confirmed cases for the

weeks are then found by taking a difference of the cumulative counts. In Figure 4.4,

we compare the forecasts for Puerto Rico. We notice that, the multi-variate model

forecasts much better because it is smoother. Also its variance is higher because of

the multiple parameters that need to be estimated in the model.

Comparitively the two univariate ARIMA models are much less smoother, because

of which they predict the increase in the counts much better in the first couple of

weeks. The two univariate ARIMA models, the one that was selected for the total

number of counts in the Americas, ARIMA(0, 3, 2), and the one that was selected

as the best model for Puerto Rico, ARIMA(2, 3, 1), seem to be performing similarly.
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Figure 4.4: Comparing ARIMA(0, 3, 2), which was selected for the total cumulative counts
in Americas, ARIMA(2, 3, 1), which was selected for Puerto Rico alone and multi-variate
ARIMA(0, 1, 1). Observed confirmed counts are given by the black line. The predictions
are made for epidemic weeks 90 to 98, based on available previous data.

This could mean that instead of fitting a seperate model for every country, it could

generally be a good idea to fit ARIMA(0, 3, 2) to all the countries. We look at

the residual plots for ARIMA(0, 3, 2) and ARIMA(2, 3, 1) in Figure 4.5. The plot

shows us that other than a huge negative residual on epidemic week 50, the fit of

ARIMA(0, 3, 2) and ARIMA(2, 3, 1) are similar. This validates our statement that

ARIMA(0, 3, 2) works pretty well for Puerto Rico. Similarly, it also performs well for

French Guiana and Colombia.
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Figure 4.5: Comparing the residuals for Puerto Rico of ARIMA(0, 3, 2), which was selected
for the total cumulative counts in Americas, ARIMA(2, 3, 1), which was selected for Puerto
Rico alone and multi-variate ARIMA(0, 1, 1). The predictions are made for epidemic weeks
90 to 98, based on available previous data.

5 Discussion

The Chikungunya outbreak in the Americas started in December 2013 in St. Martin

and soon spread to other countries of the Americas. Currently fifty-one countries

in the Americas have been affected and understanding the spread of the disease is

critical to alert people to the risk of disease and to implement control measures. We

used multi-country SIR compartment model to model the Chikungunya transmis-

sion between St. Martin and St. Barthelemy, which were the first two islands in the
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Caribbean to have been affected by the infection. We notice that the Chikungunya

transmission did not cause an epidemic in the two countries and died down after a

while.

In future, we plan to use the multi-country SIR compartment model for all the

countries in America. But due to lack of data on the spread of Chikungunya and

inaccessibility of data on travel between the different countries, it is challenging to fit

a multi-country SIR compartment model.

As data on mosquito population is also not available it could be challenging task

to fit the Ross-Macdonald model to the data. The current estimates of mosquitos in

a location is primarily based on Centers for Disease Control and Prevention (CDC)

light trap collections, which provide only point data. Logistic regression models have

also been proposed to estimate mosquito abundance in areas not sampled by traps

[Diuk-Wasser et al., 2006]. These estimates of mosquito populations could then be

used to fit Ross-Macdonald model.

The multi-country ARIMA model seems to fix these drawbacks as it doesn’t make

any strong assumptions nor does it need data on travel or on mosquito population.

But since we need to estimate a lot of parameters for even the simplest multi-country

ARIMA model, we need sufficient data before we can continue to fit a multi-country

model for all the countries in the Americas. As we have seen with Puerto Rico, French

Guiana and Colombia, it might be a good idea to just use the ARIMA model that

best fits the entire Americas to forecast in the individual countries too.
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6 APPENDIX

6.1 Another Approach: Agent Based Model

Another approach in epidemiology to predict the spread of a disease, is to use an

agent based model. In an agent based model, each individual is considered to be in

one of the following states: susceptible (S), exposed (E), infected (I) or removed (R).

Assume there are N people in the population and let St[i], Et[i], It[i] and Rt[i] denote

the state to which individual i belongs at time t, where St[i] = 1 if i is susceptible,

and zero otherwise. Et[i], It[i] and Rt[i] can be defined simlarly. Then,

St[i], Et[i], It[i], Rt[i] ∈ {0, 1}

St[i] + Et[i] + It[i] + Rt[i] = 1 ∀ i = 1, ...,N.

An individual moves from the susceptible to the exposed compartment when he gets

infected, moves from exposed to infected if he shows symptoms or exposes symptoms

and moves from infected to removed when the infection passes away or the subject is

removed. So the movement of an individual from one state to another can be captured

by Infection rate (IR), Exposure rate (ER) and Removal rate (RR).

IRt[i] =

 1, if i moves from S to E at time t

0, o.w.

ERt[i] =

 1, if i moves from E to I at time t

0, o.w.
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RRt[i] =

 1, if i moves from I to R at time t

0, o.w.

The aggregate infection rate, exposure rate and removal rate are then given by,

IRt =

n∑
i=1

IRt[i], ERt =

n∑
i=1

ERt[i], RRt =

n∑
i=1

RRt[i].

Therefore we can write the progress of the model for each individual,

j = 1, 2, ...,N as:

St+1[j] = St[j] − IRt[j]

Et+1[j] = Et[j] + IRt[j] − ERt[j]

It+1[j] = It[j] + ERt[j] − RRt[j]

Rt+1[j] = Rt[j] + RRt[j]

In order to use an agent based model to predict the spread of Chikungunya in

the Americas, we need to simulate the spread of the disease throughout the Americas

which is computationally very heavy. We try to draw a comparision between the

compartment models and agent based models to formulate a new model that can

switch easily between them and use both of their advantages.

As we can see, agent based models are formulated in discrete time whereas com-

partmnet models are formulated in continuous time. In order to compare the two

models we need to first formulate agent based model in continuous time.
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6.1.1 Continuous Time Formulation of Agent Based Model

In continuous time the dynamics of a agent based model have to be invaariant to

changes in the time step. Hence the states evolve as:

St+1[j] = St[j] − dtIRt[j]

Et+1[j] = Et[j] + dt{IRt[j] − ERt[j]}

It+1[j] = It[j] + dt{ERt[j] − RRt[j]}

Rt+1[j] = Rt[j] + dtRRt[j]

where,

IRt[i] =


St[j]
dt

w.p. P(j gets infected in dt)

0 o.w.

ERt[i] =


Et[j]
dt

w.p. P(j gets exposed in dt)

0 o.w.

RRt[i] =


It[j]
dt

w.p. P(j gets removed in dt)

0 o.w.

6.1.2 Relationship between Agent Based Model and Compartment model

Compartment models assume that both the duration of the disease and the duration

for emergence of symptoms follow exponential distribution for an individual. So

the time any individual spends in the infected or exposed state follows exponential
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distribution. Compartment models also assume perfect mixing, meaning every person

meets every other person with the same probability.

Let us thus assume that the duration of disease for individual j follows Exp(δ[j])

and the duration for emergence of symptoms follows Exp(ε[j]). Suppose cIS[j], cES[j]

denotes the number of contacts that j has per unit time with infected people and

exposed people respectively, when he is susceptible.

By assuming perfect mixing we get the probability that j gets infected by an

infected person as,

P( j infected by I) = P( j meets infected)P( j infected | j meets infected)

=
I

N
iIS

where iIS is the probability that any person gets infected given he has had contact

with an infected person. Similarly probability that j gets infected by an exposed

person is,

P( j infected by E) = P( j meets exposed)P( j infected | j meets exposed)

=
E

N
iES

where iES is the probability that any person gets infected given he has had contact

with an exposed person. So combining the two we get,

P( j infected in dt) = cIS[j]dtP( j infected by I) + cES[j]dtP( j infected by E)

= dt

{
cIS[j]iIS

I

N
+ cES[j]iES

E

N

}
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Let TE[j] and TR[j] be the time taken for exposure of symptoms and removal of the

infection for individual j respectively. Then assuming exponential time durations,

TE[j] ∼ Exp(ε[j]) and TR[j] ∼ Exp(δ[j]). Therefore assuming dt is very small, the

probability of exposing symptoms and that of being removed are as follows.

P( j exposed in dt |Et[j] = 1) = P(TE[j] ≤ dt) = 1− exp− dt
ε[j] ≈ dt

ε[j]
.

P( j removed in dt |It[j] = 1) = P(TR[j] ≤ dt) = 1− exp− dt
δ[j] ≈ dt

δ[j]
.

Therefore computing the expectation we get that

E

[
dS[j]

dt

]
= −E [IR[j]] = −S[j]

{
cIS[j]iIS

I

N
+ cES[j]iES

E

N

}
(6.1)

E

[
dE[j]

dt

]
= E [IR[j] − ER[j]] = S[j]

{
cIS[j]iIS

I

N
+ cES[j]iES

E

N

}
−
E[j]

ε[j]
(6.2)

E

[
dI[j]

dt

]
= E [ER[j] − RR[j]] =

E[j]

ε[j]
−
I[j]

δ[j]
(6.3)

E

[
dR[j]

dt

]
= E [RR[j]] =

I[j]

δ[j]
. (6.4)

This looks very simlar to the differential equations of compartment models but it

talks about the change in state of one individual and not of the population itself. We

need a few more assumptions to derive the differential equations of the compartment

models. Firstly, we need homogenity within the compartments (states) and secondly

we need the flow between compartments to be equal to the expected value of the sum

of the underlying probabilistic rates for each individual (i.e. flow between states for

each individual).
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