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1. Exploratory Analysis of the Higgs Boson Data. In this section we explore the Higgs
boson data that is used for the experiments in Section 5 of the main paper (Chakravarti
et al., 2021). The Higgs boson machine learning challenge data set is available on the CERN
Open Data Portal at http://opendata.cern.ch/record/328 (ATLAS collabora-
tion, 2014). The data set consists of simulated data provided by the ATLAS experiment at
CERN’s Large Hadron Collider to optimize the search for the Higgs boson.

We analyze the data set provided by the challenge that has 818,238 observations, where
each observation is a simulated proton-proton collision event in the detector. The data set
contains d= 35 features whose individual details can be found on CERN’s Open Data Portal
or in Appendix B of Adam-Bourdarios et al. (2015). The data contain information on the
properties of the jets, which are clustered showers of hadrons, and other objects produced
during the collision.

As mentioned in the main paper (Chakravarti et al., 2021), the data contains primitive
“raw" features (names starting with PRI) that are measured by the detector, and derived
features (names starting with DER) that are functions of the primitive features. We use and
analyze just the primitive variables (d= 16), since the derived features are just functions of
the primitive features. We additionally only use the events that produce at least two jets in the
collisions (i.e., PRI_jet_num= 2) in order to avoid structurally absent missing values as
mentioned in the main paper (Chakravarti et al., 2021). This results in 165,027 events; 80,806
background events and 84,221 signal events. Descriptions of the primitive variables used are
provided in Table 1.

Among the primitive features, five of them provide the azimuth angle φ of the objects
generated in the collsion (variables ending with _phi). These features are rotation invariant
in the sense that the event doesn’t change if all of them are rotated together by some angle.
The first row of Figure 1 demonstrates the uniform distribution of the φ variables. So, the φ
variables themselves do not contain any information, but the difference between the angles is
what contains the information. Hence to interpret these variables more easily using the active
subspace methods, we remove the invariance of the azimuth angles by rotating all the φ’s and
setting the azimuth angle of the leading jet at 0 (PRI_leading_phi= 0). So the new φ
variables give the difference between the azimuth angles of the objects and the leading jet.
The bottom row of Figure 1 demonstrates the importance of the change in the distribution of
the angles after the rotation. The symmetry of the distributions is expected as a difference of
π radians is the same as a difference of −π radians.
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TABLE 1
Descriptions of the variables used in the analysis of the Higgs boson machine learning challenge data set

(Adam-Bourdarios et al., 2015). Since we only use the primitive variables, we drop the pre-fix PRI from the
variable names and further shorten some of the variable names intuitively for convenience.

Variable Description

tau_pt The transverse momentum of the hadronic tau.

tau_eta The pseudorapidity η of the hadronic tau.

tau_phi The azimuth angle φ of the hadronic tau.

lep_pt The transverse momentum of the lepton (electron or muon).

lep_eta The pseudorapidity η of the lepton.

lep_phi The azimuth angle φ of the lepton.

met The missing transverse energy.

met_phi The azimuth angle φ of the missing transverse energy.

met_sumet The total transverse energy in the detector.

lead_pt The transverse momentum of the leading jet, i.e., the jet with the largest trans-
verse momentum (undefined if PRI_jet_num = 0).

lead_eta The pseudorapidity η of the leading jet (undefined if PRI_jet_num = 0).

lead_phi The azimuth angle φ of the leading jet (undefined if PRI_jet_num = 0).

sublead_pt The transverse momentum of the subleading jet, i.e., the jet with the second
largest transverse momentum (undefined if PRI_jet_num ≤ 1).

sublead_eta The pseudorapidity η of the subleading jet (undefined if PRI_jet_num ≤ 1).

sublead_phi The azimuth angle φ of the subleading jet (undefined if PRI_jet_num ≤ 1).

all_pt The scalar sum of the transverse momentum of all the jets in the event.

Weight The event weight.

Label The event label (string) (s for signal, b for background).
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Fig 1: Top row gives the azimuth angles (φ) before rotation. Bottom row gives the azimuth
angles after rotation such that the angle of the leading jet is set to 0 and the angles of the
other objects give the difference of the azimuth angle between the object and the leading jet.
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Fig 2: Distributions of the transverse momentums of the particles produced, the missing trans-
verse energy and the total transverse energy in the detector. These are the variables for which
we consider a log transformation due to the skewness in their distribution.
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Fig 3: Distributions after a log transformation of the transverse momentums of the particles
produced in the collision, the missing transverse energy and the total transverse energy in the
detector.

Additionally, we take logarithmic transformations of the variables that give the transverse
momentum of the particles produced (variables ending with _pt), the missing transverse
energy (PRI_met) and the total transverse energy in the detector (PRI_met_sumet). This
ensures that our analyses are not affectced by the skewness demonstrated by these variables
in Figure 2. Taking a log transformation of these variables in Figure 3 fixes the problem upto
some extent.

Our goal is to detect the presence of the Higgs boson signal in the experimental data, us-
ing this data set. The difficulty of this problem is demonstrated by Figure 4 which shows that
the distributions of the signal and the background data are not very different. Particularly,
when we are searching for signal that is just around 15% of the experimental data or even
less, these minute differences are difficult to detect. Note that the experimental data is a mix-
ture of the background and the signal data, so with just 15% of the experimental data being
signal, the distribution of the experimental data appears to be almost indistinguishable from
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Fig 4: Histograms of the 15 variables for signal (green) data as well as background (grey)
data.

the distribution of just the background data. But as seen in Section 5.2 of the main paper
(Chakravarti et al., 2021), in the case where λ = 0.15, almost all the semi-supervised tests
conclude that the experimental data’s distribution is different from the background data’s dis-
tribution, hence detecting a signal in the experimental data. In the next section, we explore
the output of the random forest classifier that detected the signal successfully in the experi-
mental data in one of the 50 simulations explored in Section 5.2 when λ= 0.15, i.e., 15% of
the experimental data is from the signal sample.

2. Experimental Data when Signal Strength λ = 0.15. As described in Section 5
of Chakravarti et al. (2021), for the semi-supervised model-independent tests that detect the
presence of the Higgs boson signal in the experimental data, we consider a training sample of
m1 = 20,403 background events and n1 =20,403 experimental events to train a random for-
est classifier to differentiate between the background and the experimental events. We then
test for the presence of signal using a test sample of m2 =20,000 background events and
n2 =20,000 experimental events. Both the training and the test experimental samples contain
signal events with probability λ= 15%. That is, the number of signal events in the training
and the test experimental data is randomly distributed as Bin(n1, λ) and Bin(n2, λ) respec-
tively, where λ= 0.15. Note that the trained classifier successfully differentiates between the
training background sample and the training experimental sample, which differ from each
other very slightly, as can be seen in Figure 5, since the experimental data is a mixture of
background and signal events. As seen in Figure 5, the distributions of the background and
the experimental data are almost indistinguishable visually from the histograms.
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Fig 5: Histograms of the 15 variables for training data containing the experimental (purple)
data as well as the background (grey) data. Note that the experimental data is a mixture of
the background and the signal data, with the probability of signal event being λ= 0.15.

To demonstrate this further, we visually analyze the multivariate dependencies for the two
data sets as well. We demonstrate two different approaches. First we use Principal Com-
ponent Analysis on just the background data to find the two principal components of the
background data and then project the test experimental data on those axes. Figure 6c shows
that the signal is not very distinguishable from the background. We then use t-distributed
stochastic neighbor embedding proposed by Maaten and Hinton (2008) to visulaize the data
in two dimensions. First we train the algorithm to distinguish experimental data from the
background data. We see in Figure 6a that the method doesn’t appear to be able to spatially
separate the signal data from the background data. Since this approach fails, we directly train
the algorithm to distinguish the signal data from the background data. As shown in Figure 6b,
this approach fails to separate the signal data from the background data as well. This empha-
sizes the difficulty of the problem to detect differences between the background data and the
experimental data.

Despite the difficulty of the problem, random forests demonstrate power in detecting the
differences between the background and the experimental data, hence detecting the presence
of signal in the case of λ= 0.15. So, it is important to understand, charaterize and interpret
how the variables influence the classifier output, in order to understand the random forest,
which otherwise would be a black box. This is not an easy task as demonstrated by Figure 7,
which shows the random forest classifier output (estimated probability of being an experi-
mental event) marginally as a function of each of the variables in the data.
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(a) Semi-supervised tSNE (b) Supervised tSNE

(c) PCA

Fig 6: Experimental and background test data containing signal events (green) and back-
ground events (grey). (a) t-distributed stochastic neighbor embedding (tSNE) trained on ex-
perimental versus background training samples. (b) t-distributed stochastic neighbor embed-
ding (tSNE) trained on signal versus background training samples. (c) Principal component
analysis (PCA) trained on background training samples.

We notice that the random classifier seems to depend on the transverse momentums of all
the particles produced (variables ending with _pt), as well as the missing transverse energy
(met) and the total transverse energy in the detector (met_sumet).

To understand better how these variables affect the classifier we use the active subspace
method introduced in Section 4 and show the results in Section 5.4 of the main paper
(Chakravarti et al., 2021). As mentioned in the paper, we use a Gaussian kernel for the local
linear smoother used in the active subspace method. In order to select the smoothing param-
eter for the local linear smoother, we use the standard deviation of the variables scaled by a
factor h as the bandwidth for the multivariate local linear smoother. We explore a few scaling
factors h and calculate the standardized gradients as well as the mean of the standardized
gradients for every choice of h. Following the active subspace method (Method 4.1) in the
main paper (Chakravarti et al., 2021), we find the projection of the experimental test data
on the mean standardized gradient vector. We finally choose a scaling factor h that visually
demonstrates the maximum amount of distinguishability between the signal and the back-
ground distributions when the experimental data is projected along the corresponding mean
standardized gradient vector.
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Fig 7: Experimental membership probabilities (the random forest output) versus all the vari-
ables for the test data sets. Signal events in green and background events in grey.

Figure 8 demonstrates the signal and the background distributions of the experimental data
when it is projected along the corresponding mean standardized gradient vector for different
scaling factors h. We only show the results for a subset of the scaling factors that we consid-
ered. Figure 8 shows that scaling the standard deviation by anything larger than 3 appears to
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Fig 8: Histograms of the signal (green) and the background (grey) events from the test experi-
mental data projected onto the mean standardized gradient vector when the standard deviation
of the variables scaled by a factor (h) is used as the bandwidth for the Gaussian kernel when
using the local linear smoother.

give similar results. We also notice that h= 0.5 appears to give the most separation between
the background and the signal distributions. Note that if two scaling factors give similar re-
sults, it is better to pick the smaller scaling factor, which will result in higher bandwidths for
the local linear smoother, resulting in a smoother estimate. So we consider h = 0.5 and di-
vide the standard deviation in the data by h= 0.5 to use that as the bandwidth for the results
presented in Section 5.4 of Chakravarti et al. (2021).

The mean standardized gradient vector as well as the first two active subspace vectors are
presented in Section 5.4 of Chakravarti et al. (2021). Figure 9 presents the third, fourth and the
fifth active subspace vectors as well as the eigenvalues. We see that most of the information
is contained in the first two eigenvectors, as can be seen from the eigenvalues plot. Similar
to the first and the second eigenvector plots, for each of the plots 9b, 9c and 9d, we constrain
the variable that has the largest absolute eigenvector value, i.e. kj = argmaxi |M̂ij |, for j =
3,4,5, to have the same sign in each of the bootstrap iterations as the sign in the original data.
That is, for j = 3,4,5 we constrain sgn(M̂∗

kjj
) = sgn(M̂kjj), whereM·j is the jth eigenvector

in the data and M∗
·j is the jth eigenvector in the bootstrap iterations. We do this to avoid

the eigenvalues from being systematically symmetric about zero. We notice from Figure 9
that for most variables their eigenvector values are still symmetric. So, we notice that the
third, fourth and the fifth eigenvectors do not really provide any additional information. The
fourth eigenvector in Figure 9c shows that the transverse momentum of the sub-leading jet
might play a role in detecting the signal. Recollect that this effect was also seen in the first
eigenvector in the main paper.
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(a) Standardized Gradient Distribution (b) Third Eigenvector

(c) Fourth Eigenvector (d) Fifth Eigenvector

Fig 9: The active subspace variables for the classifier trained on data with signal strength
λ= 0.15 computed using a local linear smoother that uses the gaussian kernel with smooth-
ing parameter h = 0.5. (a) gives the eigenvalues of the standardized gradients. In (b), (c)
and (d), the violin plot and the dashes give the bootstrapped empirical distribution and the
bootstrapped uncertainty intervals computed using the empirical quantiles respectively for
the third, the fourth and the fifth eigenvectors. The dots represent the eigenvalues, the third,
the fourth and the fifth eigenvectors computed on the combined test data.
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